
	 1	

	
	
	
	
	

2012	 NASA	 Robotics	
Academy	

Autonomous	 Path	 Planning	
	

Goddard	 Space	 Flight	 Center	
Greenbelt,	 Maryland	

June	 4,	 2012	 –	 August	 10,	 2012	
	

Principle	 Investigator:	 Thomas	 Flatley,	 Code	 587	
Principle	 Mentor:	 Jeffrey	 Hosler,	 Code	 587	
Developers:	 John	 Donahue,	 Julia	 Sichler	

	
	 	
	
	
	
	
	
	

	 2	

Abstract
Autonomous path planning in partially known or unknown environments is an important
research topic. In the case of Europa and Titan, it is impossible to know exactly what is
below the ice. For this reason, it is critical to have an adaptive planning system that can
adjust to new sensor information. The objective of this project was to create a system to
allow a rover to navigate through mars like terrain. Algorithms such as the Bug
algorithm and the Ant Colony Optimization algorithm were simulated; however each had
its own limitations. A combination of both algorithms has proven to be the best
navigation system. At the conclusion of the summer, we were able to combine the
previously researched image processing techniques, path planning systems, and current
drive functions to allow the rover to navigate autonomously through the Mars yard, but it
did not recognize that it had reached its goal due to errors in the PAL system.

Figure 1: The “Mars yard” – simulated Martian terrain

	 3	

Table of Contents

Abstract .. 2
1. Introduction ... 4
2. Research .. 4
 2.1 Bug Algorithm .. 4
 2.2 Wavefront Algorithm .. 4
 2.3 A* and D* Algorithm ... 5
 2.4 Ant Colony Optimization Algorithms ... 5
 2.5 Cost Function .. 5
3. Hardware ... 5
 3.1 Rover .. 6
 3.2 Sensor ... 6
 3.3 PAL .. 6
 3.4 Compass ... 7
4. Software .. 8
 4.1 Maze Function .. 8
 4.2 RoverCerebellum .. 8
 4.3 RoverCerebrum .. 8
5. Trouble Shooting ... 9
 5.1 Calibration .. 9
 5.2 Sensors ... 9
 5.3 PAL System ... 9
6. Future Work .. 10
7. Conclusion .. 10

	 4	

1 INTRODUCTION
The purpose of autonomous path planning is to allow a robot to navigate through terrain
relying solely on sensors built into the rover without human interference. In previous
years, interns at NASA Goddard Space Flight Center have worked with the Personal
Exploration Rover (PER) to develop an Adaptive Sensor Fleet to enable the rover to
explore and collect data efficiently in various terrains. In order to accomplish
autonomous driving the groups incorporated a compass into the rovers as well as a
Precision Asset Location system. Our summer objective was to create an algorithm for
the PER to navigate through a Mars-like terrain without any data regarding the
environment.

2 RESEARCH
Navigating through unknown terrain required research into path planning algorithms and
strategies in order to find the best way to navigate autonomously.

 2.1 Bug Algorithm
The bug algorithm draws a straight line from the initial position to the goal. This system
works perfectly as long as there are no obstacles in way of the most direct route. If an
obstacle is detected, the algorithm randomly chooses one direction to follow the side of
the obstacle. When the obstacle is no longer present, the rover reverts back to the most
direct route until it reaches the goal, or another obstacle. The disadvantage of this
algorithm is that if the program guesses the wrong direction to follow an obstacle there
can be a significant detour.

 2.2 Wavefront Algorithm

Figure 2: Illustration of the Wavefront algorithm

The Wavefront Algorithm
starts from an initial
position and propagates
outwards until it reaches
the goal. It is called
Wavefront because the
steps appear to spread
outward like a wave. The
disadvantage of this
algorithm is that the
terrain and obstacles must
be fully known.
	

	 5	

 2.3 A* and D* Algorithm
Are relative path planning techniques. The A* algorithm requires a known or partially
known environment. Because of the necessary terrain knowledge the A* algorithm was
too inefficient. A D* algorithm does not require a known environment. However, D*
algorithms are very complicated (they were too difficult to conceptualize and code in one
summer project). For these reasons neither the A* or D* algorithm were used.

 2.4 Ant Colony Optimization (ACO) Algorithm
Ant colony optimization algorithms focus on using multiple units to explore a given area
and move in the most direct path possible from start to finish. The algorithm does this by
incorporating the idea of smell. When ants walk, they leave a quickly decaying chemical
enzyme. When armies of ants walk from the nest to the food source they follow the

strongest scent, which is the shortest
path. Because our project only had one
rover we could not use the idea of a
“swarm” of robots to accomplish one
goal, but using the idea of applying a
numerical path, which was linearly
increasing worked in our project. It was
because of this that the rover was able to
escape from completely concave and
even one-way-in one-way-out obstacles.

Figure 3: Illustration of ACO logic

 2.5 Cost Function
Previous groups used the idea of assigning each possible step a certain cost value, and
forcing the rover to go to either the highest or lowest option (depending on the
design). We applied this concept of a cost function, and were consequently able to use a
few of the algorithms above.

3 HARDWARE
Our project was plagued with hardware errors. Which was a positive thing in that we
gained an extensive knowledge about the sensors, PAL system, and batteries; however it
did delay our project. We have compiled many “pro tips” about the hardware so that the
next group can spend more time path planning.

	 6	

 3.1 Rovers
The rovers we used were Personal Exploration Rovers (PERs) developed by the Robotics
Institute at Carnegie Mellon University. The PER is a small, six-wheeled rover designed
after the Mars Exploration Rovers (MERS), Spirit and Opportunity. The PER, an
inexpensive, smaller version of the MERS, was implemented into museums across the
country to educate the general population about the MERS. Firmware containing basic
functions such as driving and turning was included with the PER and was written in
Java. The PER uses a wireless card that connects to a preset router that uses a specific
type of IP address. Any computer can also connect to that router and communicate with
the robot using the included firmware or a command prompt terminal.

 3.2 Sensors
The PER has several sensors to allow it to navigate through a simulated Mars terrain
(Mars yard). Carnegie Mellon included a camera, an IR rangefinder, and an UV

light. The IR rangefinder senses
objects in front of the rover and
determines the distance they are
from the PER. The UV light
was used to displayed signs of
life within museum
exhibits. Previous interns at
NASA implemented a compass
on the rear of the PER. The
compass determines the
direction of the rover and
outputs the direction in degrees.

 3.3 PAL system
The Precision Asset Location (PAL) system is a positioning system created by
Multispectral Solutions Inc. (MSSI). Tags placed on top of the rover, and at the final
position create ultra wideband radio waves that are then sensed by receivers. Ultra
wideband waves are short pulsating waves that send out packets of data. Four receivers
in the corners of the mars yard use ultra wideband technology to detect these
packets. The PAL hub interprets the packets by use of an optimization algorithm with the
aid of a reference tag, located atop of one of the lampposts in the courtyard. The hub is
able to identify outliers and averages the data to create a precise location of a tag. A new
system is able to determine a location within one foot of the actual location. The hub is
able to determine an accurate location of a tag if it is seen by at least three of the four
receivers. Otherwise, it will determine a “presence” for the tag, but will not be able to
read its location. With the aid of client software, we were able to extract the positions of
the tags to use within the program.

Figure	 4:	 Picture	 of	 PER’s	 sensors	

	 7	

Due to the age and conditions required by the hardware, we had difficulties using the
system to its fullest extent. The age caused the system to have a two to five foot margin
of error, instead of only one. Also, one of the receivers was out of commission, requiring
all the remaining receivers to be able to see a tag in order for the hub to determine the
location. Because of this, we were unable to see the entire Mars yard, and were limited to
using only the visible area.

Instructions on the PAL system:

1. Place the reference tag on top of the lamppost in the center of the courtyard closes
to the Mars yard.
It doesn’t really matter if you have the reference tag out before turning on the
system, but if the tag is already out, it will take less time for the system to begin
giving accurate data.

2. Turn on the router by turning on the power strip.
3. Turn on the PAL hub via the switch on the back left side.
4. Connect your computer to the “rovernet2” Wi-Fi.
5. Go into your favorite Internet browser and type in “192.168.2.100”.

This will pull up an interface for the PAL system.
6. Click on “demo”. Allow the JavaScript to run.
7. Go into “areas” and click on “B23 courtyard”.

The map will display any tag in the courtyard. In the GUI, you can control what you
want to see on the map.
When you are done with the PAL system, or simply want to check something on the
Internet:

1. TERMINATE ALL PROGRAMS, AND CLOSE THE INTERFACE.
2. Disconnect from “rovernet2”.
3. Turn off the PAL hub and router if you are done for the day.

 3.4 Compass

Figure 5: Picture of compass

The compass outputs units that are in
degrees; however a compass has a
different system than the unit circle. On
a compass the units increase as the
needle rotates clockwise, whereas a unit
circle increases in the counterclockwise
direction. We created a system that
converts the compass degree value to its
equivalent on the unit circle. This was
done by breaking down the four
quadrants then converting the compass
value. The conversion was necessary
because Java’s trig libraries use the unit
circle.

	 8	

4 SOFTWARE
The software we were able to write works in the Mars. Difficulties arise from errors in
the sensors. While reading other articles about autonomous path planning it appears that
relying on sensor data is a very common complaint among roboticists. Our task was to
plan a path in unknown terrain, so we used a combination of the Bug algorithm and the
Ant Colony Optimization algorithm. In each step the rover takes into consideration: how
far the next step is from the final destination, if there is an obstacle, and if the rover has
explored that area (smell). All of these inputs are added to a total cost. The rover
chooses its next destination based on the lowest possible cost.

 4.1 Maze Function
In order to learn more about the PER and
gain more experience programming in
Java, we created a maze for the rover to
navigate through. Paper boxes were set
up for the rovers to encounter and
therefore avoid. The predictability of
the maze aided us in finding the errors
within the program and to correct
them. This enabled us to practice Java
syntax and to use the various pre-
programmed actions within the
firmware. This program became the
basis for the obstacle avoidance portion
of our final program.

 Figure 6: An illustration of a maze

 4.2 RoverCerebellum
The Cerebellum instructs the rover to do comparatively simple mechanical
techniques. The cerebellum is where the program begins. It first aligns the rover in the
direction of the final destination. Then, the rover drives forward while scanning the
horizon from negative thirty to thirty degrees at ten-degree increments. If there is an
obstacle detected the location is stored in the Cerebrum. This is done so that these
obstacles can be accessed later. If the rover encounters an object in its path, it switches
over to the cerebrum.

 4.3 RoverCerebrum
The cerebrum decides the more “thought provoking” decisions for the rover. For
instance, if an obstacle is in-between the rover and the goal, it will consider which path to
take using the algorithm specified in section 2.5. If the rover’s Cerebellum senses rocks
that are near but not in the way, their location is stored in the Cerebrum. This creates a
map of known obstacles, which is stored in the Cerebrum. Because of the Cerebrum’s

	 9	

larger processing requirements, it is not faster than the Cerebellum. For this reason, the
Cerebrum is only used when the rover is encountering challenging terrain.

Figure 7: Diagram of Rovers logic system

5 TROUBLE SHOOTING
There are a lot of things that can go wrong. We created a list of the most common things
that have happened to us, and how to fix them (or at least reduce their impact).

 5.1 Calibration
When calibrating the rover:

1. Open eclipse and run calibration
2. Press the “load servo calibration rover” button. Now, you can make adjustments

to the robots head angle, tilt, turning power, and distance travelled forward.
3. Make sure that there aren’t unwanted negative signs before the values.

Sometimes these won’t be displayed, but they are there. So if your rover starts
going backwards for some unknown reason check to make sure unwanted
negatives are not in the calibration data

 5.2 Sensor Error
The sensors often gave data that was either slightly incorrect, or very incorrect. We
alleviated this problem by running a for-loop and taking the average of multiple sets of
data. Previous groups used Kalman filters, but they proved too difficult for our summer
project. Our simple averaging increased the accuracy of the compass, PAL, and IR data
significantly.

 5.3 PAL errors
When using the PAL, we recommend using it in the morning and whenever the sun is not
on the receivers. If there are no tags on the map, check the “raw data”. If you only get
presence data, there is sun on the receivers and it will take time before you can use the
system.

Cerebellum:	
1. If	 correct	 direction	 drive	

forward	
2. Scan	 horizon	 and	 send	 data	 to	

Cerebrum	
3. If	 object	 detected	

Cerebrum:	 	
1. Drive	 forward	 25cm	
2. Input	 sensor	 data	 into	

object	 map	
3. Consult	 cost	 function	
4. Turn	 in	 correct	 direction	
5. Check	 compass	 if	 rover	 is	

pointed	 towards	 goal	 switch	
to	 cerebellum.	

	

	 10	

When you encounter “Error: no valid reference” in the raw data, check that the
reference tag is straight on the lamppost. If it is, and you still have the error:

1. Close the interface.
2. Terminate any program that is using the PAL data. (Seriously, otherwise, the

PAL will not work after you reboot it.)
3. Disconnect from “rovernet2”.
4. Turn off the PAL system, then the router.
5. Wait for a few seconds, and then turn them back on.
6. Reconnect to “rovernet2”.
7. Open the interface and check the raw data.

If the problem continues, there is most likely sun on one or multiple receivers, in which
case you should go work on something else and by the time you’re done, the sun will
have moved. If you don’t believe there is sun on any receiver, one of the receivers may
be giving bad data. Go into the configure menu, and then into the third tab. Check that
the receivers are sending data for the tags. There will be a column for each active
receiver, and if one appears to have straight zeros, you might have a bad receiver. If this
is the case, talk to your mentor. If the PAL mysteriously stops working or closes your
connection, try rebooting the hub after closing any program using it.

6 FUTURE WORK
Future groups should start by working on filters so that they can get better data from the
sensors. This includes the IR range finder, the compass, and the PAL system. Our code
was based on the assumption that all of these things would give relatively accurate and
precise data, however there was a wide range in the data collected and a large margin of
error.

7 CONCLUSION
We were able to successfully create an algorithm for a PER to navigate through a Mars
yard autonomously. The final program consisted of two Java classes, a basic path
planning system and an obstacle avoidance system. The path planning system was able
to incorporate the Bug and Ant Colony Optimization algorithms to become the
“Cerebellum” of our program. Information from the PAL system and the compass
enabled the system to determine the best direction for the rover to travel. The obstacle
avoidance system, or “Cerebrum”, was able to guide the rover around an obstacle and
move back to the path planning system. The path planning system continued until the
rover was within two feet of the destination, due to a margin of error for the PAL system.

References:
http://www.cs.cmu.edu/~myrover/PER/
Sapphire	 DART	 (Model	 H651)	 User’s	 Guide	 pg.	 6-‐8	

